Arquivo da tag: Ciência

Vamos tocar o Sol

Estamos, sem dúvida, vivendo a era de ouro da exploração espacial. Poderosos equipamentos – em terra e no espaço – descobrem novos mundos em outros sistemas estelares num ritmo nunca antes observado. É como se tivéssemos descoberto o caminho das pedras. Mas não são apenas sistemas estelares distantes que atraem a nossa atenção.

A data de 12 de agosto de 2018 ficará marcada na história da exploração espacial, pois nesta data a NASA – Agência Espacial Americana – lançou a primeira missão exploratória da humanidade a uma estrela. A nossa estrela: o Sol.

Não é de hoje que as agências espaciais de todo o planeta estudam a nossa estrela, mas hoje a história é diferente. Estamos enviando a primeira sonda projetada exclusivamente para estudar a atmosfera de nossa estrela, ou seja, estamos enviando a Parker Solar Probe numa missão para tocar o Sol, numa região nunca antes atingida.

parker_solar_probe_a_mission_to_touch_the_sun_1
Figura 1. Sonda Parker Solar Probe e sua missão para tocar o Sol.

A histórica missão da Parker Solar Probe revolucionará nossa compreensão do Sol e, consequentemente, das estrelas e dos mundos que as orbitam, na medida em que será o primeiro artefato produzido pelo homem a chegar tão próximo de uma estrela, enfrentando as brutais condições de calor e radiação.

Muita ciência e tecnologia embarcada

É de se imaginar que para a Parker Solar Probe “tocar” o Sol muita tecnologia foi desenvolvida para proteger os instrumentos num ambiente tão hostil.

Os dois principais problemas são o calor e a radiação. Embora na corona solar a temperatura beire os milhões de graus Celsius, a transferência de calor é bem menor que isso – mesmo ainda sendo altíssima para qualquer instrumento científico – devido a baixa densidade de partículas no espaço. Segundo os cientistas da NASA, o calor que atingirá a sonda será da ordem de absurdos 1.400º C.

Por essa razão, a Parker Solar Probe é protegida por um escudo de calor de 2,4 metros de diâmetro e com 115 mm de espessura, construído com placas compostas de carbono e pintado de branco com tinta cerâmica que refletirá a maior parte do calor incidente. Além disso, foram instalados radiadores com fluido resfriador, fazendo com que na parte de trás do escudo – onde ficam protegidos os instrumentos da sonda – a temperatura se mantenha em torno de suportáveis 30º C, viabilizando o funcionamento dos instrumentos científicos.

parker_solar_probe_painel_contra_o_calor
Figura 2. Aspecto do escudo de calor da sonda Parker Solar Probe.

Mas nem todos os instrumentos da Parker Solar Probe ficarão escondidos atrás do escudo de calor, afinal uma das tarefas da missão será a coleta de partículas do Sol e esse instrumento coletor será um dos poucos a ficarem expostos ao calor extremo de nossa estrela. Construído com folhas de Titânio, Zircônio, Nióbio e Molibdênio, o instrumento coletor foi projetado para suportar calor de até 2.350º C. Os grids que produzirão o campo elétrico do instrumento são feitos de Tungstênio, resistindo a 3.420º C.

parker_solar_probe_coletor_de_particulas
Figura 3. O instrumento, que coletará partículas do Sol, da Parker Solar Probe suportará calor extremo, acima de 2.000º C.

A energia da sonda será captada por painéis solares, que serão usados quando a sonda estiver nos pontos mais distantes do sol em sua órbita. Perto do Sol os painéis serão recolhidos para se protegerem da alta temperatura atrás do escudo de calor. 

parker_solar_probe_radiadores_contra_o_calor
Figura 4. Aspecto dos instrumentos radiadores de calor da Parker Solar Probe.

Além de todos os recursos utilizados para a proteção contra o calor e radiação, a sonda Parker Solar Probe também se destaca por ser uma nave autônoma.

Equipada com sensores que chegam à metade do tamanho de um aparelho celular, a nave terá autonomia na decisão de manobra, agindo por conta própria a partir do momento que deixar a órbita da Terra, realizando os procedimentos necessários para se manter sempre na posição correta em relação ao Sol, ou seja, mantendo o escudo protetor sempre apontado para o Sol, garantindo o seu funcionamento.

Parker Solar Probe Light Bar Test
Figura 5. Aspecto geral da sonda Parker Solar Probe.

A necessidade de autonomia ocorre devido a distância que a nave atingirá quando estiver no Sol – 8 minutos-luz – que inviabilizaria qualquer comando de controle a partir da Terra. O tempo de 8 minutos para receber um sinal de status da nave e mais 8 minutos para enviar um comando de manobra é demais para corrigir um posicionamento errado da nave a partir do centro de controle da NASA aqui na Terra.

A viagem até o Sol

A sonda Parker Solar Probe foi enviada ao espaço a bordo do poderoso foguete Delta IV, um veículo lançador de cargas simples ou múltiplas.

Parker Solar Probe Rollback for Launch
Figura 6. Foguete Delta IV que levou a Parker Solar Probe rumo ao Sol.

Já no espaço, em sua órbita ao redor do Sol, a Parker Solar Probe usará a gravidade do planeta Vênus durante sete sobrevoos, durante cerca de sete anos (tempo da missão), para levar gradualmente sua órbita cada vez mais próxima do Sol.

parker_solar_probe_orbita
Figura 7. Aspecto da órbita da Parker Solar Probe, que usará a gravidade do planeta Vênus em sobrevoos para cada vez mais se aproximar do Sol.

Em seu ponto mais próximo da superfície, a nave vai voar através da atmosfera do Sol a cerca de 6 milhões de km e com uma velocidade da ordem de 700 mil km por hora, bem dentro da órbita do planeta Mercúrio e mais do que sete vezes mais perto do que qualquer nave espacial chegou antes. Lembrando que a distância média da Terra ao Sol é de 150 milhões de km.

Voando na parte mais externa da atmosfera do Sol, conhecida como Corona, pela primeira vez, a Parker Solar Probe vai empregar uma combinação de medições e de imagens para revolucionar nossa compreensão da Corona e expandir o nosso conhecimento da origem e evolução do vento solar, além de contribuir para nossa capacidade de previsão de alterações no ambiente do espaço da Terra que afetam a vida e a tecnologia em nosso planeta.

A ciência do Sol

Os objetivos primários da missão serão rastrear como a energia e o calor percorrem a corona solar e explorar o  vento solar, bem como as partículas energéticas solares. Os cientistas têm buscado essas respostas por mais de 60 anos, mas a investigação exigia o envio de uma sonda através da região de calor de 1.370º C da Corona.  Hoje, isso é finalmente possível com os avanços da engenharia térmica de ponta que podem proteger a missão na sua jornada perigosa. A sonda Parker Solar Probe carrega quatro suítes de instrumentos destinadas ao estudo de campos magnéticos, plasma e partículas energéticas, além do vento solar.

o_sol
Figura 8. Aspecto da Corona Solar, por onde passará a Parker Solar Probe.

Por que estudar o Sol e o vento solar?

  • O Sol é a única estrela que podemos alcançar. Ao estudar o Sol, aprendemos mais sobre estrelas em todo o universo.
  • O Sol é uma fonte de luz e calor para a vida na terra. Quanto mais soubermos sobre isso, mais podemos compreender como se desenvolveu a vida na Terra.
  • O Sol também afeta a Terra em formas menos familiares. É a fonte do vento solar; um fluxo de gases ionizados que passam pela Terra a velocidades de mais de 500 km por segundo.
  • Distúrbios no vento solar sacudem o campo magnético da Terra e sua energia provoca alterações no espaço perto da Terra, conhecido como tempo espacial.
  • Tempo espacial pode mudar as órbitas dos satélites, encurtar suas vidas ou interferir com a eletrônica embarcada. Quanto mais aprendemos sobre o que causa o espaço tempo – e como prever isso – mais podemos proteger os satélites, que tanto dependemos para manter o nosso estilo de vida moderna.
  • O vento solar também preenche grande parte do sistema solar, dominando o ambiente espacial distante. Como pretendemos enviar naves espaciais e astronautas mais longe da Terra, temos que entender este ambiente espacial.

vento-solar
Figura 9. O Sol, a Corona Solar e o Vento Solar.

Estudar o Sol é fundamental para o futuro da exploração espacial humana em nosso próprio sistema solar e para o desenvolvimento de novas tecnologias que nos farão construir equipamentos e sondas espaciais cada vez mais adequados ao ambiente hostil do espaço.

Sem dúvida, mais um grande passo da humanidade na busca incansável pelo conhecimento espacial que nos dê a confiança para o próximo e importante salto: a viagem humana ao planeta Marte.

Fotos: NASA e Internet.


Você sabia?

Molibdênio é um metal de transição muito utilizado na fabricação de ligas metálicas de alta resistência mecânica e corrosiva.
Zircônio é um metal de transição, tendo como uma de suas propriedades mais importantes o seu ponto de fusão, que é acima de 2500ºC. Por isso, esse metal é aplicado no interior de reatores de fusão nuclear, suportando as elevadíssimas temperaturas.
Nióbio é um metal de transição, comumente utilizado em ligas metálicas com o ferro, o aço, com o zircônio e essas ligas são utilizadas na fabricação de estruturas, soldas, gasodutos, superligas para fabricação de motores a jato em virtude da resistência a corrosão, altas temperaturas, e como supercondutor em meio criogênico.

Anúncios

Pálidos pontos, por um CubeSat

Em 14 de fevereiro de 1990 uma imagem, aparentemente comum, impressionou um dos mais famosos astrônomos da nossa era, Carl Sagan. Foi o registro do nosso Planeta Terra, ocupando apenas 1 pixel da imagem, realizado pela sonda Voyager 1 à incrível distância de 40,5 AU, o qual ele chamou de “pálido ponto azul”, alertando-nos para a necessidade de protegermos o nosso planeta.

PaleBlueDot
Figura 1. Um pálido ponto azul: nosso Planeta Terra, registrado pela sonda Voyager 1 a mais de 6 bilhões de quilômetros de distância.

O tempo passou, a tecnologia espacial avançou e hoje temos “naves” – ou melhor dizendo, satélites – de tamanhos bastante reduzidos – iguais a uma caixa de presentes. São os chamados CubeSat, acrônimo das palavras em Inglês: Cube e Satellite – Cubo e Satélite.

Os CubeSat são um tipo de satélite miniaturizado usado para pesquisas espaciais e comunicações radioamadoras. Os CubeSats normalmente possuem volume de 1 litro (um cubo de 10 cm) e massa de até 1,33 kg. O interessante é que, normalmente, esse tipo de satélite usa componentes eletrônicos “de prateleira”.

CubeSat
Figura 2. Aspecto de um CubeSat. Uma caixinha de 10 cm de lado, cheia de componentes eletrônicos simples que são lançados em órbita baixa da Terra – abaixo dos 800 km de altitude – para fazer experiências mais simples e com um custo bem inferior em relação aos satélites tradicionais.

 

A Grande Surpresa dos CubeSats na Missão InSight da NASA

A InSight é uma missão do programa do Discovery da NASA para exploração interior do Planeta Marte, usando investigações sísmicas, geodésia e transporte de calor, que irá colocar um único módulo geofísico em Marte para estudar seu interior profundo. Tratarei desse assunto em outro post, no futuro.

Lançada no dia 5 de maio de 2018, com previsão de chegada ao Planeta Vermelho em 26 de novembro de 2018, levou “de carona” em seu veículo lançador alguns CubeSats para diversos tipos de experiências e entre as quais, testar o quão distantes os CubeSats poderiam suportar o recebimento de comandos a partir do nosso planeta.

O resultado: A NASA estabeleceu um novo recorde de distância para CubeSats em 8 de maio, quando um par de CubeSats chamado Mars Cube One (MarCO) alcançou a distância de 1 milhão de quilômetros da Terra. Um do CubeSats, chamado MarCO-B, usando uma câmera com lentes do tipo “olho de peixe”, tirou sua primeira foto no dia 9 de maio de 2018. Essa foto é parte do processo usado pela equipe de engenharia para confirmar a que antena de alto ganho da nave se desdobrou corretamente. Como um bônus, capturaram a Terra e sua Lua como pequenas partículas flutuando no espaço, lembrando o feito da Voyager 1, 28 anos atrás.

PaleDots
Figura 3. Pálidos pontos flutuantes no Espaço. Nosso lar, o Planeta Terra, e o único lugar do Universo onde o Homem já pisou além de seu planeta natal.

Vendo essas imagens não há como não lembrar da emocionante reflexão de Carl Sagan durante uma palestra pública na Universidade Cornell em 1994, quando apresentou a imagem da Voyager 1 sobre o profundo significado atrás da ideia do “pálido ponto azul”.

Olhem de novo esse ponto. É aqui, é a nossa casa, somos nós. Nele, todos a quem ama, todos a quem conhece, qualquer um sobre quem você ouviu falar, cada ser humano que já existiu, viveram as suas vidas. O conjunto da nossa alegria e nosso sofrimento, milhares de religiões, ideologias e doutrinas econômicas confiantes, cada caçador e coletor, cada herói e covarde, cada criador e destruidor da civilização, cada rei e camponês, cada jovem casal de namorados, cada mãe e pai, criança cheia de esperança, inventor e explorador, cada professor de ética, cada político corrupto, cada “superestrela”, cada “líder supremo”, cada santo e pecador na história da nossa espécie viveu ali – em um grão de pó suspenso num raio de sol.

A Terra é um cenário muito pequeno numa vasta arena cósmica. Pense nos rios de sangue derramados por todos aqueles generais e imperadores, para que, na sua glória e triunfo, pudessem ser senhores momentâneos de uma fração de um ponto. Pense nas crueldades sem fim infligidas pelos moradores de um canto deste pixel aos praticamente indistinguíveis moradores de algum outro canto, quão frequentes seus desentendimentos, quão ávidos de matar uns aos outros, quão veementes os seus ódios.

As nossas posturas, a nossa suposta auto importância, a ilusão de termos qualquer posição de privilégio no Universo, são desafiadas por este pontinho de luz pálida. O nosso planeta é um grão solitário na imensa escuridão cósmica que nos cerca. Na nossa obscuridade, em toda esta vastidão, não há indícios de que vá chegar ajuda de outro lugar para nos salvar de nós próprios.

A Terra é o único mundo conhecido, até hoje, que abriga vida. Não há outro lugar, pelo menos no futuro próximo, para onde a nossa espécie possa emigrar. Visitar, sim. Assentar-se, ainda não. Gostemos ou não, a Terra é onde temos de ficar por enquanto.

Já foi dito que astronomia é uma experiência de humildade e criadora de caráter. Não há, talvez, melhor demonstração da tola presunção humana do que esta imagem distante do nosso minúsculo mundo. Para mim, destaca a nossa responsabilidade de sermos mais amáveis uns com os outros, e para preservarmos e protegermos o “pálido ponto azul”, o único lar que conhecemos até hoje.

—Carl Sagan

 

Nota do autor

Em astronomia, a Unidade Astronômica (abreviada como AU, por recomendação da União Astronômica Internacional) é uma unidade de distância, aproximadamente igual à distância média entre a Terra e o Sol. É bastante utilizada para descrever a órbita dos planetas e de outros corpos celestes no âmbito da astronomia planetária. Em 2012, a União Astronômica Internacional definiu um valor constante e padrão para a UA, até então considerada como aproximadamente 150 milhões de km. O valor da constante é AU = 149 597 870 700 m.

Montando o Sistema Solar – 2ª Etapa (Fase 10): Éris

Após um hiato de alguns meses, chegamos ao último corpo do Sistema Solar de nosso sistema planetário: Éris, um planeta anão além de Plutão que por um bom tempo foi conhecido como o Planeta X, uma alusão ao 10º planeta descoberto.

Éris – apesar de pequeno, o maior objeto transnetuniano* conhecido

Localizado nos confins do Sistema Solar, numa região do conhecida como Cinturão de Kuiper**. É o maior planeta-anão do sistema solar e quando foi descoberto, ficou desde logo informalmente conhecido como o “décimo planeta”, devido a ser maior que o então planeta Plutão. Devido a nova categoria introduzida pela União Astronômica Internacional, Éris também passa a ser um plutoide***.

* Objeto transnetuniano são corpos pertencentes ao Sistema Solar que estão situados em órbitas além de Netuno.

** O Cinturão de Kuiper é uma região do nosso sistema solar, próxima a órbita de Plutão e que foi descoberta em 1992.

*** Plutoides são pequenos corpos celestes semelhantes a Plutão, pequenos demais para serem chamados de planetas.

montagem_etapa2_fase10_extras_eris
Figura 1 – Éris, o maior planeta-anão conhecido.

 

Éris tem um período orbital de cerca de 560 anos e encontra-se a cerca de 97 UA do Sol, em seu afélio. Como Plutão, a sua órbita é bastante excêntrica, e leva o planeta a uma distância de apenas 35 UA do Sol no seu periélio (a distância de Plutão ao Sol varia entre 29 e 49,5 UA, enquanto que a órbita de Netuno fica por cerca de 30 UA).

montagem_etapa2_fase10_extras_cinturao_kuiper
Figura 2 – Cinturão de Kuiper, contendo milhões de pequenos corpos celestes, onde parte da órbita de Éris está inserida.

Na mitologia, Éris é a deusa da discórdia. O planeta anão foi chamado assim porque a sua descoberta lançou a discórdia entre os astrónomos quanto à definição de um planeta e causou, indiretamente, a descida de estatuto de Plutão de “planeta” para “planeta anão”. Na mitologia grega é famosa por ter causado, indiretamente, a Guerra de Tróia.

Éris é bastante distante do Sol e até mesmo de Plutão, conforme podemos notar na figura 3, onde os planetas estão dispostos em distâncias proporcionais em relação ao Sol.

montagem_etapa2_fase10_extras_distancias_proporcionais_planetas
Figura 3 – Éris, um planeta-anão muito distante do Sol, nos confins do Sistema Solar.

O material da décima fase da 2ª etapa

O material desta fase é distinto das demais anteriores por ser o último dos planetas a ser adicionado ao planetário.

montagem_etapa2_fase10_eris_preparando
Figura 4 – Preparando o material para montagem.

montagem_etapa2_fase10_eris_material
Figura 5 – O material para montagem de Éris.

A montagem em si foi simples, pois já peguei o jeito da coisa e nem mais preciso olhar as instruções que acompanham o material.

montagem_etapa2_fase10_eris_mao_na_massa_1
Figura 6 – Montando as peças da engrenagem central.

montagem_etapa2_fase10_eris_mao_na_massa_2
Figura 7 – Inserindo a engrenagem no eixo central do planetário.

O difícil é manusear toda a estrutura para a inserção da nova engrenagem: o peso do planetário já é algo considerável, o que se torna o problema para segurá-lo com apenas uma das mãos sem o risco de danificá-lo.

montagem_etapa2_fase10_eris_na_mao
Figura 8 – O planeta anão Éris na minha mão.

Na sequência, Éris é inserido no braço que o une aos demais planetas no planetário.

montagem_etapa2_fase10_eris_inserido
Figura 9 – Éris – em primeiro plano – já inserido no planetário.

Na figura 10 já podemos ver Éris e seus “vizinhos”.

montagem_etapa2_fase10_eris_planetas_proximos
Figura 10 – Éris e seus “vizinhos”.

Na figura 11 temos o aspecto atual do planetário, como todos os seus planetas e luas.

montagem_etapa2_fase10_aspecto_planetario
Figura 11 – Aspecto atual do planetário.

A figura 12 dá uma ideia do aspecto decorativo do meu home-office com a presença charmosa do planetário. Smiley piscando

montagem_etapa2_fase10_aspecto_decorativo
Figura 12 – Aspecto do home-office com o planetário embelezando o cenário.

Com este post fica concluída a etapa de montagem dos planetas.  Mas o planetário ainda não está totalmente concluído!

A última fase de montagem do planetário inclui o pedestal do mesmo bem como a inserção do motor elétrico que possibilitará o movimento dos planetas.

Agora é aguardar mais um tempinho para que eu possa concluir a montagem do sistema planetário. Até a próxima etapa então! Polegar para cima

Montando o Sistema Solar – 2ª Etapa (Fase 9): Plutão

E chegamos a Plutão, o planeta que foi rebaixado à categoria de Planeta-Anão. Com ele, estamos a um passo do último planeta do nosso sistema planetário.

Plutão – o rei do Cinturão de Kuiper *

Plutão foi descoberto após a descoberta de Netuno e, de forma idêntica, através de cálculos matemáticos, pois os cálculos da órbita de Netuno apresentavam pequenas perturbações que só poderiam ser atribuídas a um corpo massivo. Depois da exclusão de Urano do rol de probabilidades, suspeitou-se de outro planeta, mais distante ainda que Netuno.

* Cinturão de Kuiper é uma região do espaço do sistema solar que se estende além de Netuno até cerca de 48 UA – Unidade Astronômica ** – e está repleto de uma miríade de pequenos mundos gelados, entre os quais se destaca Plutão.

** Uma Unidade Astronômica, ou simplesmente UA, é uma convenção astronômica que equivale a distância entre o Sol e a Terra, ou seja, cerca de 150 milhões de quilômetros.

extras_plutao_1
Figura 1 – Plutão, o planeta rebaixado à categoria de planeta-anão.

Mas como um corpo tão pequeno em relação a Netuno e tão distante poderia influenciar a órbita deste? Devido a excentricidade de sua órbita. De fato a órbita de Plutão é tão peculiar que, mesmo estando bem depois de Netuno – no seu ponto mais distante do Sol pode chegar a uma distância de 7.375 milhões de quilômetros – quando está no ponto mais próximo do Sol essa distância cai para cerca de 4.435 milhões de quilômetros, ou seja, Plutão fica mais próximo do Sol do que mesmo Netuno (ver post anterior).

Plutão possui um diâmetro equatorial de apenas 2.390 Km, ou seja, o planeta-anão Plutão é menor que a nossa Lua e sua massa em relação a Terra é de apenas 0,0021 Terra. Muito pequeno. Mas apesar do tamanho, possui 3 luas conhecidas, sendo Caronte a maior delas.

Plutão possui um período de rotação de 6 dias e 9 horas terrestres, enquanto que seu ano corresponde a 248 anos terrestres. Sua temperatura superficial média é de –230º C – o zero absoluto equivale a –273º C.

O material da nona fase da 2ª etapa

O material é idêntico ao do planeta Netuno, apenas com as engrenagens de variando no número de dentes, devido ao período de translação distinto entre os planetas.

montagem_fase2_etapa9_material
Figura 2 – material da nona fase.

A montagem de Plutão foi uma das mais rápidas, justamente por se assemelhar a dos planetas anteriores e por não mais sentir a necessidade de seguir as instruções.

montagem_fase2_etapa9_engrenagem_1
Figura 3 – montagem do eixo central das engrenagens.

montagem_fase2_etapa9_engrenagem_2
Figura 4 – concluindo a montagem das engrenagens da órbita de Plutão.

A inserção de cada novo planeta no eixo central do planetário dificulta o manuseio na hora da montagem, pois o peso já é considerável e já não há tanto espaço para uma pegada firme e sem risco ao trabalho já realizado, conforme podemos constatar na imagem abaixo.

montagem_fase2_etapa9_aspecto_eixo_central
Figura 5 – aspecto do eixo central do planetário, com suas engrenagens e braços planetários: dificuldade na montagem de novos planetas.

A seguir, Plutão inserido no braço o aspecto geral do planetário restando agora apenas mais um planeta-anão.

montagem_fase2_etapa9_plutao_inserido_no_braco_2
Figura 6 – Plutão inserido no braço do planetário.

montagem_fase2_etapa9_aspecto_geral_planetario
Figura 7 – aspecto geral do planetário com a inserção de Plutão (mais à direita).

Abaixo o aspecto atual do meu home office, embelezado com o planetário já quase completo! Smiley piscando

montagem_fase2_etapa9_aspecto_geral_planetario_home_office
Figura 8 – aspecto do meu home office embelezado com o planetário quase completo.

E por enquanto é só, mas já na expectativa da montagem do último dos planetas do planetário.  Vamos aguardar! Polegar para cima

Montando o Sistema Solar – 2ª Etapa (Fase 8): Netuno

Entramos nas fases finais da montagem do planetário, chegando ao oitavo planeta que assinala o limite exterior do nosso sistema planetário. Embora possua algumas semelhanças com Urano, certas características o convertem em um planeta único.

Netuno – o gigante azul

Netuno é o único planeta que não pode ser localizado a olho nu e que foi descoberto graças ao poder da matemática!

Seu descobrimento é atribuído ao matemático francês Urbain Le Verrier, que calculou sua posição e massa a partir das anomalias causadas na órbita de Urano, que havia sido reconhecido pouco tempo antes.

montagem_fase2_etapa8_netuno
Figura 1 – Netuno, o gigante azul.

Netuno, assim como seu vizinho Urano, é um “gigante de gelo”, um planeta de grandes dimensões cujo interior se encontra dominado por uma mistura turbulenta e meio derretida de materiais congelados como água, amoníaco e metano. O núcleo do planeta é uma esfera sólida de gelo e rochas com um tamanho similar ao planeta Terra.  Possui 13 luas conhecidas, mas uma se destaca devido ao tamanho em relação as demais e ao próprio planeta: Tritão.

A distância média em relação ao Sol é de cerca de 4.500 milhões de quilômetros (ou 250 minutos-luz). Sua superfície – comparada a terrestre – é de 15 Terras. Possui um período de rotação (dia) de 16 horas e de translação (ano) de 165 anos terrestres.

O material da oitava fase da 2ª etapa

O material dos planetas exteriores tem sido praticamente os mesmos: engrenagens, eixos, parafusos, etc. iguais aos planetas anteriormente montados.

montagem_fase2_etapa8_material
Figura 2 – material de montagem da oitava fase da segunda etapa.

Devido ao tempo desde a última montagem, precisei recorrer às instruções. Mas foi suficiente uma passada de olhos apenas, somente para relembrar alguns macetes.

montagem_fase2_etapa8_engrenagem
Figura 3 – aspecto de uma das engrenagens, antes da montagem.

Abaixo, o planeta Netuno na minha mão e depois já inserido no braço do planetário.

montagem_fase2_etapa8_netuno_na_minha_mao
Figura 4 – o planeta Netuno na minha mão.

montagem_fase2_etapa8_netuno_no_braco_planetario
Figura 5 – o planeta Netuno (azul, à esquerda) já inserido no braço do planetário ao lado de Urano (turquesa, à direita).

Concluindo mais uma fase da montagem do planetário, a imagem abaixo mostra o aspecto do mesmo após a inserção de Netuno.

montagem_fase2_etapa8_aspecto_do_planetario_com_netuno
Figura 6 – aspecto do planetário com a inserção de Netuno (planeta mais à esquerda).

Na próxima fase será a vez de Plutão, o planeta rebaixado.

Montando o Sistema Solar – 2ª Etapa (Fase 7): Urano

Vamos seguindo com a montagem do planetário e desta vez chegamos ao sétimo planeta, o primeiro dos gigantes de gelo sistema solar.

Urano – turquesa e inclinado

Devido a sua enorme distância do Sol, Urano foi o primeiro planeta a ser descoberto com a ajuda de um telescópio.  Seu brilho, portanto, está no limite do que pode ser observado a olho nu a partir da Terra.

extras_urano_1
Figura 1 – Urano, o planeta cor de turquesa

O traço mais chamativo de Urano é sua inclinação axial muito acentuada.  Diferentemente de outros planetas, como Mercúrio ou Júpiter, que orbitam em torno do Sol quase erguidos, ou apenas inclinados 20º ou 30º, como a Terra e Marte, Urano tem uma inclinação de 98º, deixando o seu polo norte ligeiramente abaixo do plano de sua órbita, ou seja, enquanto os outros planetas giram como piões, Urano parece girar como um bola, tornando o seu ciclo estacional o mais estranho do sistema solar.

Urano tem uma massa, comparada a terrestre, maior em 14,5 vezes.  Seu volume equivale a 63 planetas Terra, possuindo um período de rotação de pouco mais de 17 horas, enquanto que um ano em Urano equivale a 84,32 anos aqui na Terra.

O material da sétima fase da 2ª etapa

O material para a montagem do planeta Urano é basicamente o mesmo do planeta Saturno.

montagem_fase7_etapa2_1
Figura 2 – O material para montagem.

A montagem das engrenagens dos últimos planetas é bastante semelhante e, por isso, já estou realizando sem mais precisar da orientação do guia de montagem.

montagem_fase7_etapa2_3
Figura 3 – Montando as engrenagens.

Em detalhe, o planeta Urano e sua cor característica.

montagem_fase7_etapa2_2
Figura 4 – O planeta Urano já inserido no planetário.

Com o planeta já inserido, resolvi fazer essa imagem com uma vista de cima do planetário, dando pra ver todos os planetas e imaginar suas órbitas, igualzinho como víamos nos antigos livros de geografia no colégio.

montagem_fase7_etapa2_4
Figura 5 – O planetário visto de cima.  Todos os planetas inseridos até o momento estão visíveis.

Consegue identificar cada um dos planetas?  Se sim, deixa um comentário aqui no final do post! Smiley piscando

montagem_fase7_etapa2_5
Figura 6 – Aspecto atual do planetário com a inserção do planeta Urano.

Partindo agora para as últimas fases da etapa atual, o planetário já embeleza o meu home office com os vários tamanhos e cores dos planetas do nosso sistema solar.

montagem_fase7_etapa2_6
Figura 7 – O planetário já compondo a decoração do meu home office.

Mais uma fase cumprida e já com o material da próxima fase, o planeta Netuno, agora é aguardar mais um tempinho para a montagem e apresentação no próximo post.

Montando o Sistema Solar – 2ª Etapa (Fase 6): Saturno

Nem completou um mês desde o último post sobre a montagem do meu sistema planetário e estamos de volta para mostrar como está o conjunto após a inserção de um dos mais belos planetas: Saturno.

Saturno – o senhor dos anéis

O segundo maior planeta do sistema solar se tornou célebre por seus espetaculares anéis e seu grande sistema de satélites.  O planeta possui 60 luas conhecidas!

extras_saturno
Figura 1 – Saturno, seus anéis e algumas de suas luas.

O diâmetro de Saturno é um pouco menor do que o de Júpiter (cerca de 80% do diâmetro de Júpiter), enquanto que seu peso equivale a um terço.  Trata-se, portanto, do planeta menos denso do sistema solar – na verdade, é mais leve do que a água.

Como Júpiter, Saturno é composto em sua maioria por dois gases mais leves, o hidrogênio e o hélio, com traços de outros elementos.  A principal diferença entre os dois mundos está nas baixas temperaturas que ocorrem nesses lugares tão afastados do sistema solar.  Nas regiões superiores de Saturno a temperatura chega aos -153ºC, cerca de 30ºC menos que Júpiter.

Saturno está a 1.433 milhão de km do Sol (79 minutos-luz).  Sua superfície equivale a 83,7 planetas Terra, mas por ter pouca densidade a gravidade comparada com a terrestre é de apenas 0,91.

O material da sexta fase da 2ª etapa

Eis o material para colocar o segundo maior planeta do sistema solar no planetário.

montagem_fase2_etapa6_peças_saturno
Figura 2 – Material necessário para a inserção de Saturno no planetário.

Em minhas mãos, o segundo maior dos planetas do sistema solar.

montagem_fase2_etapa6_segurando_saturno
Figura 3 – Saturno, o segundo maior dos planetas.

As engrenagens dessa fase são praticamente as mesmas da fase anterior, quando Júpiter foi inserido no planetário.

montagem_fase2_etapa6_engrenagens
Figura 4 – Duas das engrenagens necessárias para o cálculo correto da órbita de Saturno.

A dificuldade aumenta apenas no momento de retirar o eixo central para inserção das novas engrenagens, devido ao peso do conjunto que já é considerável para ser manuseado por apenas uma das mãos.

Nesta fase um outro fator de dificuldade foi a necessidade da troca dos pés da base de sustentação, justamente devido ao aumento do peso do conjunto.  Os novos pés possuem uma base de apoio maior que os anteriores.  A retirada dos pés anteriores necessitou do uso de alicate, mas a inserção dos novos foi realizada sem necessidade de qualquer ferramenta.

montagem_fase2_etapa6_novos_pes
Figura 5 – Novos pés de apoio inseridos na base do sistema.  Ao lado, o antigo pé de apoio.

Finalizando, podemos ver o novo aspecto do planetário com a inserção do planeta Saturno.

montagem_fase2_etapa6_saturno_inserido
Figura 6 – Saturno inserido no planetário.

montagem_fase2_etapa6_planetario_com_saturno
Figura 7 – Aspecto final do planetário após a inserção do planeta Saturno.

Concluída mais uma fase, o próximo destino será o planeta de cor turquesa Urano, o primeiro planeta descoberto na era do telescópio.  Vamos aguardar!!! Smiley piscando