Os Buracos Negros são reais: Einstein acertou de novo

Desde os tempos da escola que eu me incomodava com a teoria de gravitação de Newton – aquela que, em resumo, diz ser a gravidade uma “força” que faz com que um corpo com massa maior atraia corpos com menos massa. Sempre me perguntava: “como assim uma força?”. Talvez por terem nos ensinado sobre a Teoria de Newton – e não sobre a Teoria da Relatividade de Einstein, em que a gravidade não é uma “força”, mas sim uma deformidade do tecido do espaço-tempo do Cosmos provocado por corpos massivos – entender o conceito de gravidade não seja assim tão natural para a maioria das pessoas e, por isso, a divulgação da maior notícia científica do ano e uma das mais importantes da história da ciência não tenha ocupado mais do que alguns segundos nos jornais da TV, infelizmente.

Sobre os buracos negros, até então só tínhamos projeções feitas por computadores, baseadas em cálculos matemáticos em cima da Teoria da Relatividade de Einstein, e ainda assim apenas divulgadas no meio científico. A ideia mais próxima de um buraco negro que o público comum pôde vislumbrar foi apresentada no excelente filme “Interestellar”, de 2014, com o fictício buraco negro chamado Gargantua.

INTERSTELLAR
Figura 1. Imagem do buraco negro fictício Gargantua apresentado no filme Interestellar, de 2014.


O primeiro registro real de um buraco negro: Einstein acertou de novo

Saiba, então, que o dia 10 de abril de 2019 entrou para a história da Ciência, pois nessa data foi apresentada ao mundo a primeira fotografia real de um buraco negro, localizado no centro da galáxia M87 (Messier 87, também chamada de Virgo A, distante de nós a aproximadamente 60 milhões de anos-luz na direção da constelação de Virgem).

Os buracos negros – já previstos por Einstein desde o ano de 1915 em sua Teoria Geral da Relatividade – são regiões do espaço tão massivas, mas tão massivas, que nada – nada mesmo – pode escapar, nem mesmo a luz – daí a expressão “buraco negro”, pois não é possível vê-lo diretamente, já que ele não deixa sua luz escapar diante a enorme curvatura do espaço a sua volta provocada por sua gigantesca massa, formando assim uma “singularidade” delimitada por uma superfície denominada “horizonte de eventos”, que marca a fronteira na qual, uma vez penetrada, a matéria não se pode mais voltar.

albert_einstein_1941
Figura 2. Albert Einstein, autor da Teoria Geral da Relatividade, que apresentou uma nova abordagem sobre o que é a gravidade e propondo a existência de buracos negros. Desde 1915 ele já sabia da existência de buracos negros.

Apesar de a teoria de Einstein afirmar claramente a existência de buracos negros desde 1915, ainda não havia uma prova real ou “visível” deste fenômeno, o que levou a várias discordâncias entre cientistas ao longo dos últimos 100 anos sobre a real existência desses colossais corpos massivos pelo universo.  A revelação – em foto e em cores – do buraco negro em M87 mostrou, mais uma vez, que Einstein estava certo e que a sua Teoria da Relatividade é o maior legado científico da humanidade.

Sendo negros por não emitirem luz, como podem ser detectados?

Através da interação com a matéria em sua vizinhança um buraco negro pode se tornar “detectável”, quer seja por meio da observação do movimento de estrelas em uma dada região do espaço ou mesmo pela medição de grande quantidade de radiação emitida quando a matéria proveniente de uma estrela atraída para dentro do buraco negro é aquecida a altas temperaturas no chamado “disco de acreção”, chegando a escapar até mesmo da própria galáxia através do “jato relativístico”.

blackhole_sections_br
Figura 3. As partes de um buraco negro. O que o torna “visível” são o disco de acreção e o jato relativístico. A singularidade – o buraco negro em si – não é visível.

Mas não pense que é assim tão fácil “visualizar” um buraco negro. Muito pelo contrário.
Para capturar a incrível imagem do buraco negro no centro da M87 foi criada uma rede internacional de radiotelescópios formando um gigantesco radiotelescópio virtual equivalente a um telescópio do tamanho do planeta Terra. Esse radiotelescópio foi chamado de Telescópio de Horizonte de Evento (EHT), numa colaboração internacional cujo apoio nos Estados Unidos inclui a National Science Foundation.

Pra você ter uma ideia, anos atrás a NASA chegou a pensar que seria necessária a construção de um telescópio muito grande no espaço para se conseguir um vislumbre da imagem de um buraco negro e mesmo assim sem garantias.  Isso, por si só, dá-nos a noção de quão difícil e incrível foi mais essa façanha da genialidade humana, iniciada em 1915 com a intuição de um gênio – Einstein – e concluída em 2019 com os maiores cientistas da atualidade e da tecnologia de nosso tempo.

black_hole_xray_layout
Figura 4. Imagem do centro da galáxia M87 obtida pelo observatório Chandra, da NASA.

Para complementar o EHT, várias naves espaciais da NASA fizeram parte do grande esforço para observar o buraco negro usando diferentes comprimentos de onda da luz. Como parte deste esforço, o Observatório de Raios-X Chandra da NASA, o Nuclear Spectroscopic Telescope Array (NuSTAR), além do telescópio do Observatório Espacial Neil Gehrels Swift, todos em sintonia com diferentes variedades de luz de raios-x, olharam para o centro da M87 ao mesmo tempo juntamente como o EHT em abril de 2017.

m87_hubble_image
Figura 5. A galáxia M87 e o registro de um jato relativístico a partir de seu centro feito pelo telescópio espacial Hubble.

Dois anos de captura de dados e uma imagem histórica

Não pense você que toda essa estrutura de telescópios em terra e no espaço foi usada apenas para gerar uma foto JPG do buraco negro. Longe disso, os telescópios e radiotelescópios registraram informações, dos mais variados tipos, que foram guardadas em poderosos computadores com enorme capacidade de armazenamento.  Para ser mais preciso, todas as informações coletadas pelo telescópio virtual do EHT foram somadas em mais de 8 petabytes de dados.  Acredite, isso é muita informação!

Light bulb 8 petabytes equivalem a 8.000 terabytes, ou seja, 8 mil discos rígidos desses que atualmente são usados em computadores pessoais para armazenamento de dados.

Como a Internet não possui a capacidade para a transferência tão grande de dados de um lado para o outro entre os observatórios participantes do EHT espalhados pelo planeta, os mesmos precisaram ser transportados em seus discos rígidos periodicamente entre um continente e outro — processo que, obviamente, não foi nada rápido, além de exigir toda uma logística de segurança no transporte intercontinental.

katie_bouman_hds_blackhole
Figura 6. Katie Bouman – engenheira do MIT responsável pela criação do algoritmo que levou à geração final da imagem a partir dos 8 petabytes de dados – e parte dos discos rígidos contendo informações sobre o buraco negro obtidas ao longo de 2 anos.

Depois de juntados os discos rígidos, a reunião, comparação, gerenciamento e análise da enorme quantidade de informação foi possível graças a um algoritmo desenvolvido por uma equipe encabeçada por Katie Bouman, engenheira do MIT responsável pela criação do sistema capaz de contabilizar todo o volume de dados obtido pelos telescópios, formando a imagem final.

blackhole
Figura 7. A primeira imagem real de um buraco negro, localizado no centro da galáxia M87.


Um buraco negro em nosso quintal cósmico

De acordo com a Teoria de Einstein, buracos negros são comuns no universo. Provavelmente a maior parte das galáxias elípticas e espirais possui no seu centro um buraco negro supermassivo em seu centro. Os buracos negros supermassivos possuem uma massa muito superior aos buracos negros estelares, na ordem dos milhões ou mesmo bilhões de massas solares. Acredita-se que este tipo de buraco negro muito massivo tenha surgido quando o Universo era ainda bem jovem.

Em um artigo publicado em 31 de outubro de 2018 foi anunciada a descoberta de evidências conclusivas de que Sagitário A*, uma fonte de ondas de rádio bastante intensa e situada no centro de nossa galáxia, a Via Lactea,  é um buraco negro. Isso mesmo! Temos um buraco negro na nossa vizinhança, distante a apenas 26 mil anos-luz e com aproximadamente 2 milhões de massas solares.

Espera-se, a partir de agora, com a comprovação da existência dos buracos negros além da teoria, que as técnicas usadas para o registro visual seja avançada, tornando-se mais comum o estudo e compreensão desses gigantes massivos.  Aguardemos, então, o próximo buraco negro a se revelar em foto. Torço para que seja o Sagitário A*.

Publicidade

Um Feliz 2019 Espacial

Em menos de quatro dias – na virada do ano 2018 para 2019 – três grandes feitos da humanidade foram destaques na exploração espacial: a missão OSIRES-REx, que passou a orbitar o asteroide Bennu, tornando-se a primeira sonda a orbitar tão próximo um objeto tão pequeno como o asteroide; a missão New Horizons, que após 3 anos fazer um brilhante e revelador sobrevoo por Plutão, agora atinge o Ultima Thule, um corpo espacial nos confins do Sistema Solar e que se acredita ser originário dos primeiros momentos do nosso sistema planetário; e por último o inédito feito chinês, que pousou sua sonda Chang’e-4 no lado oculto de nossa Lua, sendo a primeira sonda espacial a pousar no até então inexplorado território lunar.

OSIRES-REx e o asteroide Bennu: na virada do ano para 2019

Enquanto a humanidade comemorava a virada para o ano novo uma equipe da NASA aguardava ansiosa os dados de telemetria que comprovariam que a nave da missão OSIRES-REx entrara em órbita do asteroide Bennu, a 110 milhões de quilômetros da Terra, fazendo do asteroide Bennu o menor objeto a ser orbitado por uma nave espacial.

OSIRIS-REx-Arrives-at-Bennu
Figura 1. Asteroide Bennu em rotação capturado pela sonda OSIRES-REx.

A órbita do OSIRIS-REx marca um salto para a humanidade. Nunca antes uma espaçonave circulou tão perto de um pequeno objeto espacial com suficiente gravidade para manter um veículo em uma órbita estável. A nave espacial circundará Bennu a uma distância de incríveis 1,75 quilômetros (isso é menor que uma pista de pouso de um aeroporto), mais perto do que qualquer outra nave chegou de qualquer objeto de estudo celestial.

Agora que a nave OSIRIS-REx está mais perto de Bennu, detalhes físicos sobre o asteroide serão revelados através de fotografias com melhor resolução e foco mais nítido, tornando a visita da nave espacial a esse monte de escombros de detritos primordial cada vez mais reveladora. Aguardemos.

New Horizons e o Ultima Thule: 1º de Janeiro de 2019

A nave da missão New Horizons, que ficou famosa por seu sobrevoo espetacular no planeta-anão Plutão em 2015 – clique aqui e veja meu artigo sobre a passagem da New Horizons por Plutão – realizou mais um feito inédito: realizou com sucesso um sobrevoo num objeto do cinturão de Kuiper – o 2014 MU69, também referido como Ultima Thule – distante a incríveis 6,6 bilhões de km da Terra, já nos confins do Sistema Solar.

181224-ultima-thule-1x1-720
Figura 2. Como o Ultima Thule era visto antes da New Horizons: um pequeno e pálido ponto de luz na imensidão do espaço.

O Ultima Thule tem 32 km de comprimento e leva 295 anos terrestres para dar uma volta no Sol e se tornou, desde o dia 1º de janeiro de 2019, o corpo celeste mais distante já visitado por um artefato humano.

190102-ultima-thule-940
Figura 3. Ultima Thule fotografado pela New Horizons na madrugada de 1º de janeiro de 2019 (imagem de confirmação, ainda em baixa resolução). Fotos com melhor resolução chegarão em semanas e meses após o sobrevoo.

O Cinturão de Kuiper

É uma região nos confins do Sistema Solar, além da órbita do planeta Netuno, distante entre 30 UA e 50 UA, e contém milhares de pequenos corpos, estes com formação semelhante à dos cometas.

new_horizons_em_janeiro_2019
Figura 4. Aspecto do Sistema Solar e a posição do Ultima Thule, bem além da órbita de Plutão.

Light bulb Cada UA (Unidade Astronômica) equivale a distância entre a Terra e o Sol, ou seja, 150 milhões de km aproximadamente.

Chang’e-4 e o Lado Oculto da Lua: 3 de janeiro de 2019

No dia em que publico este artigo, instantes atrás, o programa espacial chinês consegue realizar um feito inédito: pousou, pela primeira vez, uma sonda espacial no lado oculto da Lua.

lado_oculto_da_lua
Figura 5. Registro inédito do solo do lado oculto da Lua feito pela sonda Chang’e-4 da China no dia 3 de janeiro de 2019.

O lado oculto da Lua é assim chamado por nunca se mostrar visível para nós, a partir da Terra, uma vez que o período do movimento de rotação da Lua é exatamente igual ao seu movimento de revolução (a volta que a Lua dá em torno da Terra).

Devido ao regime fechado do governo chinês, poucas informações são compartilhadas – diferentemente da NASA – e por isso o que se sabe a respeito da missão é que a pioneira, a Chang’e-4 irá realizar estudos de observação astronômica de rádio de baixa frequência, análise de terreno e relevo, detecção de composição mineral, entre outras ações para estudar o meio ambiente no lado oculto da Lua.

De toda forma está de parabéns a China pelo feito inédito, esperando que as descobertas científicas da missão possam ser compartilhadas com cientistas de todo o planeta.

Se depender do ritmo dos 3 dias iniciais, o ano de 2019 promete. Que tenhamos cada vez mais sucesso e avanço na exploração espacial.

Korolev: A Piscina de Marte

Todos já sabem que há água – na forma de gelo – em Marte, mas uma imagem divulgada no dia 20/12/2018 pela ESA (Agência Espacial Europeia) tem causado alvoroço entre os cientistas e aqueles que – como eu – acompanham o progresso da jornada humana ao Planeta Vermelho.

O satélite da missão Mars Express da ESA, através de várias órbitas com o foco na cratera Korolev conseguiu montar imagens em altíssima resolução de uma “piscina” de gelo com cerca de 82 km de diâmetro e cerca de 1,8 km de espessura. Isso é muita água!

Perspective_view_of_Korolev_crater
Figura 1. Piscina de gelo na cratera Korolev em Marte, com 82 km de diâmetro e 1,8 km de profundidade.

A Missão Mars Express

A Missão Mars Express da ESA – com participação da NASA – foi lançada em 2 de junho de 2003 e atingiu Marte seis meses mais tarde, exatamente no dia 25 de dezembro de 2003. Estamos, portanto, no mês do aniversário de 15 anos de inserção de órbita da nave e o início do seu programa científico. Um belo presente de aniversário de 15 anos, não?

Objetivo principal da missão é procurar água sub-superficial. Sete instrumentos científicos na nave espacial ajudam nas investigações rigorosas para responder a perguntas fundamentais sobre a atmosfera, superfície do ambiente marciano, geologia, história da água e o potencial de vida em Marte.

31630
Figura 2. Satélite da Missão Mars Express na órbita de Marte desde dezembro de 2003.

No caso das imagens recentes da cratera Korolev,  foram feitas com uma câmera de alta resolução – Stereo Camera (HRSC) – da Mars Express e são compostas da visão da cratera Korolev em cinco diferentes ‘tiras’ que foram combinadas para formar uma única imagem, com cada tira recolhida ao longo de uma órbita diferente. A cratera também é mostrada em perspectiva, contexto e pontos de vista topográficos, que oferecem uma visão mais completa do terreno e em torno da cratera.

Korolev_crater_in_context
Figura 3. Cratera Korolev em ‘tiras’ fotográficas para a montagem da foto em alta resolução.

A Cratera de Korolev

A cratera de Korolev – que foi batizada com o nome do engenheiro russo Sergei Korolev, da época do programa Sputnik – tem 82 km de diâmetro e se encontra nas planícies do norte de Marte, ao sul de um grande pedaço de terreno cheio de dunas que circunda a parte da tampa de polar norte do planeta (conhecida como Olympia Undae).

Topography_of_Korolev_crater
Figura 4. Aspectos topográficos da cratera Korolev.

A cratera Korolev é um exemplo especialmente bem preservado de uma cratera marciana, preenchida não por neve, mas por gelo durante o ano todo devido a um fenômeno interessante conhecido como ‘armadilha fria’, que ocorre devido à profundidade da cratera – cerca de 2 km verticalmente abaixo de sua borda – fazendo com que o ar se mova sobre o depósito de gelo e esfrie a parte inferior, criando uma camada de ar frio que fica diretamente acima o próprio gelo, comportando-se como um escudo, ajudando o gelo a permanecer sempre estável. O ar, como se sabe, é um fraco condutor de calor, exacerbando esse efeito e mantendo a cratera Korolev permanentemente gelada.
 

Agora é esperar os próximos passos da exploração do Planeta Vermelho com essa importante descoberta e seus desdobramentos em artigos científicos que certamente surgirão em função dos estudos a partir das imagens e outros dados obtidos.